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Pseudoeffect (PE) algebras have been introduced as a noncommutative generalization
of effect algebras. We study in this paper PE algebras with the special property of
having a nonempty state space. To this end, we consider PE algebras whjmh are
group intervals and which are, in a certain sense, noncommutative only in the small.
Such a PE algebra is shown to possess a nontrivial commutative homomorphic image
from which then follows that there exist states. A typical example is given by an interval

of the lexicographical product of twgo-groups the first of which is abelian.

KEY WORDS: pseudoeffect algebragp-groups; PE algebras with Riesz properties;
states on PE algebras.

1. INTRODUCTION

MV algebras, introduced by Chang in the 1950s, provide an algebraic seman-
tics for the-lukasiewicz multivalued logics (Cignodit al, 2000). Not long ago,
Georgulescu and lorgulescu (2001) introduced a honcommutative counterpart of
MV algebras, the pseudo-MV algebras, heading towards the conception of a logic
which in general does not allow to interchange the two arguments of a conjunction.
MV- as well as pseudo-MV algebras are interval€-@roups, in the first case of
the abelian ones (Dvucehskij, 2002a; Mundici, 1986).

Effect algebras, introduced in 1993 (Foulis and Bennett, 1994), generalize
MV algebras. They are partial additive algebras modeled upon the Hilbert space
guantum effects, which in turn represent the positive outcomes of the yes—no
tests performable at some physical system (Buetcll., 1995). Any interval of
an abeliarpo-group, not necessarily a lattice-ordered one, gives rise to an effect
algebra.

Now, pseudoeffect algebras—or PE algebras for short—have been recently
introduced in Dvureénskij and Vetterlein (2001a). They generalize effect algebras
in that they are no longer necessarily commutative; and the same time, they contain
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674 Vetterlein

pseudo-MV algebras as a subclass. PE algebras arise from interpalgaups
of any kind; if this is the case, we talk about interval PE algebras. In this paper,
we are focussed exclusively on this kind of PE algebra.

The dependences among the mentioned structures is illustrated by the follow-
ing scheme. Note that there is a corresponding schenpofgroups: containing
po-groups, abeliapo-groups.Z-groups, and abeliafrgroups.

interval pseudoeffect < interval effect

(interval PE-) algebras
algebras E; +,0,1)
(E;+,0,1) (commutative)
i 1
pseudo-MV algebras « MV algebras
(E;®, 7,7, 0,1) E ®,%0,1)
(lattice ordered, (lattice ordered,
fulfilling (RDP)) commutative,

fulfilling (RDP))

The interval PE algebras are probably not characterizable in a purely algebraic
manner. But by Dvuregnskij and Vetterlein (2001b), there is certain kind of Riesz
decomposition property, called (RBPPwhich implies for a PE algebra to be an
interval PE algebra.

We are working towards a structure theory for interval PE algebras. In
Dvurecenskij and Vetterlein (2001c), congruences have been considered and in
particular, states have been examined to a certain extent. This paper may be un-
derstood as a continuation of this discussion.

Given an interval PE algebra, the first question to be asked might be, if there
is a state at all. This question has already been considered for the subclasses
of PE algebras shown in our scheme. States on MV algebras were studied in
Chovanec (1993) and Mundici (1995); in particular, MV algebras always possess
states. The same is true for interval effect algebras (Goodearl, 1996), although it
is not true in general for effect algebras (Greechie, 197 1gaied, 2001). In the
noncommutative case, the situation is more difficult. States reflect the commutative
part of an algebra only; so it is not amazing, although far from easy to see, that
even a pseudo-MV algebra need not have any state (Benskij, 2001). An
algebraic criterion which exactly would tell that at least one state exists, is not
known.

This paper is organized as follows. After providing in Sect® a con-
densed version of all the background material needed, we discuss in Section 3
in a first step the exact condition for a PE algebra to possess a state. Here, we
in particular generalize the result of Goodearl (1986) about abelian interpolation
groups.
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In what follows, we are guided by the following idea. Rather than further con-
sidering the general case, we ask which classes of PE algebras seem interesting and
reasonable to be studied at all in the present context. In a first step, in Section 4, we
will actually study a class of concrete examples—intervals in the lexicographical
product of abeliarpo-groups and possibly non-abelian ones. For them, we give
the exact conditions to fulfil the Riesz decomposition property.

These lexicographical products may be considered the typical examples of
PE algebras being noncommutative only in the small. In Section 5, this idea is
developed on general algebraic grounds. We will define order-regular and nearly
commutative PE algebras. We will prove that algebras of this kind always pos-
sess a nontrivial interval effect algebra as a homomorphic image. As a particular
consequence, the state space is then nonempty.

Furthermore, we introduce a slightly strengthened version of order regularity,
and on the basis of it, we give an improved version of the state existence theorem.
Namely, by assuming this property, we may show that a PE algebra is represented
by apo-group whose commutator subgroup is purely infinitesimal.

2. INTERVAL PE ALGEBRAS

PE algebras have been introduced in Deereskij and Vetterlein (2001a) as
a generalization of effect algebras. The axiom of commutativity, holding for the
latter structures, is replaced by what is called here pseudocommutativity. Con-
sequently, also the uniqueness of a complement is no longer assumed and re-
placed by the uniqueness of a left and of a right complement. We recall the basic
definitions.

Definition 2.1. A structure E; +, 0, 1), wheret is a partial binary operation and
0 and 1 are constants, is callegseudoeffect algebrar PE algebrafor short, if,
for all a, b, ¢ € E, the following holds.

(PE1l)a+ b and @+ b) + c exist if and only ifb + ¢ anda + (b + c) exist, and
in this cased + b) + ¢ = a + (b + ¢) (strong law of associativi)y

(PE2) Ifa + bexists, there are elementse € Esuchthah +b=d+a=b+e
(pseudocommutativity

(PE3) Thereisexactly oriee E and exactlyone € Esuchthab +d =e+a =
1 (unique left and right complementatipn

(PE4) If 1+ aora + 1 exists, thera = 0 (zero-one law.

Furthermore, for ang, b, € E, we definea < b to hold if a+ ¢ = b for some
ceE.

Finally, a PE algebr& is called aneffect algebraif, for all a,bec E, a+ b is
defined if and only ib + a is defined, in which case+ b =b + a.
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By <, a PE algebra is partially ordered, and this order is, by the pseudocom-
mutativity, two-sided.

In view of (PE3), we may introduce unary operations for the two comple-
ments. Furthermore, since a PE algebra has the cancellation property
(Dvurecenskij and Vetterlein, 2001a, Lemma 1.4(v)), we may introduce a left
and a right difference.

Definition2.2. Let(E;+, 0,1) be a PE algebra. L&t ~ be those unary operations
on E such that, for anp € E,

a+a =a +a=1
We call a PE algebraymmetrically complementéd™ = ~.

Furthermore, let/, \ be the partial binary operations da such that, for
a, b € E, b/ais defined iffb \ a is defined iffa < b, in which case we have

(b/a)+a=a+ (b\a)="h.
We then calb \ a theleft andb/a theright differenceof b anda.

Remark 2.3. We note that for elements, b of a symmetrically complemented
PE algebra, the existence@f- b and ofb + a is equivalent.

We next clarify the notions of homomorphisms and congruences of PE algebras
(for further details, see Dvucenskij and Vetterlein, 2001c).

Definition 2.4. Let (E; +, 0, 1) and F; +, 0, 1) be PE algebras.

(i) A mappingy : E — F is called ahomomorphisnif the constants are

preserved and, whenewer- b is defined fol, b € E, alsop(a) + ¢(b)
is defined and equaig(a + b).

(i) A homomorphisme : E — F is called anepimorphismif its image
¢(E) generates the whole algehfa

(iii) An equivalence relation~ on E is called acongruencef the following
holds: For anya, @, b, b’ € E such thata~ a’, b~ b’ anda + b,
a’ + b’ are both defined, we haee+ b~ a' + b'.

A congruence~ on E is called aPE algebra congruenci the quotient algebra

[E]~ = {[a]~ : a € E}isagain a PE algebra. Here, the addition BhJ is defined
accordingtoruled]- + [b]~ is defined iff for soma&’ ~ aandb’ ~ b, and equals

[c]~ iff & + b is defined an@’ + b’ ~ ¢ for somea, b, ¢c € E, and the constants

are [0l. and [1]..

A congruence does in general not lead again to a PE algebra; but we have the
following (DvureCenskij and Vetterlein, 2001c, Proposition 3.3 (ii)).
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Proposition 2.5. Let(E; +, 0, 1)be a PE algebra, and let be a congruence
on E such that, for any pair,® € E the sum of which is defined, the following
condition holds: For any a~ a, there isa b~ b, such that &+ b’ is defined; and
forany I ~ b there is an & ~ a, such that 4 + b” is defined. Then- is a PE
algebra congruence.

Note that a congruence on a PE algebra may identify any pair of elements; this
results in an algebra with only one element. We shall call a PE algé&hra (0,
1) nontrivial if this is not the case, that is, if & 1.

Now, as explained in the Introduction, we are interested in those PE algebras which
arise from intervals opo-groups.

Definition 2.6. A structure G; +, <, u), where G; +, <) is apo-group andu is
strong unit ofG, is calleda unital po-group We will usually refer to it simply by
(G, u).

For a unitalpo-group G, u), let I'(G, u) d=ef{g € G:0<g<u}, and define+
to be the partial binary operation di(G, u) that is the restriction of the group
addition to those pairs of elements whose sum lies(i@, u). Then the structure
(T(G, u); +, 0,u) is called arinterval PE algebra

Itis easily checked that an interval PE algebra is actually a PE algebra.

Among the unitapo-groups representing a given interval PE algebra, there is
a canonical one, defined and constructed as follows (ewmsKij and Vetterlein,
2001c, Definition 5.2, Proposition 5.3).

Definition2.7. Let(E; +, 0, 1) be a PE algebra and 1&,(u) be a unitapo-group.
Let:: E — I'(G, u) be an injective epimorphism such that, for every mapping
from E into a groupH preserving existing sums, there is a group homomorphism
hy : G — H suchthaty = hy o«. Then G, u) together with is called auniver-

sal ambient group for E

Certainly, if a PE algebra has a universal ambient group, then it is the only one up
to isomorphism.

Proposition 2.8. Let(E; +, 0, 1) be an interval PE algebra. L&t (E) be the
group given by the generators E and the defining relationsta= c fora, b, c €

E whenever this equation holds in E; lebe the natural embedding of E in
U(E); and let u= «(1). We may then partially orde/(E) by lettingl/(E)* the
subsemigroup generated bE). Moreover,(/(E), u), ¢) is a universal ambient
group for E.
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For an interval PE algebrg, we will in the sequel identifyfg andT"(L/(E), u),

which in particular means = 1, and we will refer tol/(E), 1), ortd/(E), simply
as the extension d to its universal ambient group.

Now, under the following condition a PE algebra is alwaysoegroup interval
(Dvurecenskij and Vetterlein, 2001b, Theorem 5.7).

Definition 2.9. We say that a PE algebr&{( +, 0, 1) fulfils (RDP) if for any
a, b, c,d € E such thala + b = c + d, there areey, &, €3, &4 € E such that the
following scheme holds:

€& &
se

c d

Moreover, we say the fulfils (RDP,) if foranya, b, ¢c,d € E suchthat + b =
¢+ d, there aresy, &, €3, €4 € E such that (i) the scheme (1) holds and (ii) for
everye, < e andej < e;, we haves, + € = € + €,.

Herein, by the scheme (1) to hold, we mean that every row and every column sums
up to what the points to; see Dveiskij and Vetterlein (2001a).

Theorem 2.10. Any PE algebrgE; +, 0, 1)fulfilling (RDPy) is an interval PE
algebra.

It is clear how the representingp-groups of symmetrically complemented PE
algebras are to be characterized.

Recall that thecenterof a group is the subset of those group elements which
commute with all other elements.

Lemma2.11. Let(E;+, 0, 1)be aninterval PE algebra an@/(E), 1)the exten-
sion of E to its universal ambient group. Then E is symmetrically complemented
if and only if1 as an element @f(E) is in the center of/(E).

3. STATES ON INTERVAL PE ALGEBRAS

To analyze the structure of some algebra, we may consider the set of all
homomorphisms to a certain simple kind of the same type of algebra. The probably
simplest nontrivial kind of a PE algebra is given by the real unit interval, that is,
by I'(R, 1), whereR is the additive group of real numbers. The homomorphisms
to it are called states (Dvurenskij and Vetterlein, 2001c).
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Definition 3.1. Let (E; +, 0, 1) be a PE algebra. Let ([0, 1}, 0, 1) be the

PE algebra whose ground set is the real unit interval and whose addition is the
usual sum of real numbers whenever defined within [0, 1]. Thetat@on E is a
homomorphisns : E — [0, 1] of PE algebras.

Moreover, let G, u) be a unitapo-groups. Then atateon G is a homomorphism
s: G — R of the unitalpo-groups G, u) and R, 1).

In other words, a state on a PE algelfitdas a function fromE to the real unit
interval preserving any existing sum and mapping the constant 1 to 1. Similarly,
a state on @o-group G, u) is a function fromG to the real numbers preserving
addition and positivity and mappingto 1.

So states on a PE algebiEa which is possibly noncommutative, are homomor-
phisms to the commutative algebra [0, 1]. Possible different elenaeitb and

b + a for somea, b € E, are mapped to the same value. So one may wonder if
there is an effect algebra underlying a PE algebra having the same state space.
This is, under certain assumptions, indeed the case (Denskij and Vetterlein,
2001c).

Theorem 3.2. Let (E;+, 0, 1) be an interval PE algebra possessing a state.
Then there is an interval effect algeb(&; +, 0, 1) and an epimorphisna :
(E;+,0,1)— (F;+,0,1) such that the following holds. Any state s on E

is of the form s= sFo¢ for some state s on F; so the mapping s> s™ es-
tablishes a one-to-one correspondence between the states of E and the states
of F.

Now note that Theorem 3.2 makes one crucial assumption: At least one state on
the PE algebra under consideration must exist. Only if this is case, we may reduce
a nhoncommutative PE algebra to a commutative one in a way which preserves the
states and, by the way, also the other homomorphisms to commutative PE alge-
bras. Now, to find sufficient conditions under which this situation is given is the
motivation underlying this paper.

In this section, we formulate exact conditions for a state on a PE algebra to exist.
Let us see first how the states on a PE algebra are related to those on a representing

group.

Proposition 3.3. Let(E; +, 0, 1) be an interval PE algebra, and I€t/(E), 1)

be the extension of E to its universal ambient group. Then any state on E may
be extended uniquely to a state @(E), 1); and the reduction of any state on
(U(E), 1)to E is a state on E.
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In particular, E possesses a state if and onl{Zi{E), 1) possesses a state.

Proof: Lets: E — [0, 1] be a state. Thes) viewed as a mapping frofa to R,
preserves existing sums, whence by Definition 8 May be extended to a group
homomorphisns: U(E) — R.

ThenSis a state. Indeed; is, as stated, a group homomorphism; furthermore, it
maps4(E)* toR™, becaus&(E) = s(E) C [0, 1] andi/(E)* is generated b§;
and, certainly, we havg(1) = s(1) = 1. O

For a unitalpo-group, we have in turn the following exact criterion for a state to
exist.

Definition 3.4. Let (G;+, <) be apo-group. LetG be the subgroup d& gen-
erated by the elements of the foran{ b) — (b + a), a, b € G, endowed with the
order inherited fronG. We callG,. thecommutator sub-po-group of.G
Moreover, let G, u) be a unitapo-group. LetG,¢, be the subgroup @ generated
by u and G,,¢, endowed with the order inherited fro®, We call Gncu, U) the
unital commutator sub-po-group &, u).

Remark 3.5. Given apo-group G, note how we may describe the elements of
Gnc. Namely,G,c contains exactly all sums of elements or negated elemei@s of
such that every element occurs the same number of times negated and nonnegated.
In particular,G is a normal subgroup and thus, endowed with the ord&,a

po-group.

More general, letH be a subgroup oz containingGy.. If then any sum of
elements ofG is contained inH, also any permutation of this sum is k. So
again,H is automatically normal and, endowed with the order f@napo-group.
Finally, given a unitapo-group G, u) such thatiis in the center o6, note how we
may describe Gnc,. Namely, we simply have Gy = GnecU {ku':
k e Z}.

Proposition 3.6. Let(G, u) be a unital po-group. The(G, u) possesses a state
if and only if there is no & u in Gy.

Proof: Lets be a state onG, u). Thena > u for somea € G, would mean
s(a) > 1; buts is constantly 0 on the whole @. This proves one direction of
the statement.

Let now conv(Gpc) be the convex hull 06, in the partially ordered sé; then
conv(Gyo) is closed under the group operations and under conjugation, so it is a
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convex normal subgroup @. So we may form the quotient grou@Jconv(g,) Of
G by convGnc), which has ] convg,) as a strong unit.

Iffornoa € Gpcwe haveu < a,thenu ¢ conv(Gnc), and so ({5] conv(G.) » [Ulconv(Gye))
is a nontrivial abelian unitapo-group. Every such group possesses a state by
Goodearl (1986, Corollary 4.4). It follows that al98,(u) possesses a state.O

We will now relate the states on a unifad-group G, u) to its unital commutator
subpo-group Gncu, U). For, we will see that, if there is a state on one of these
groups, then there is one on the other one. What we prove is even more: any state
on a subgroup o6 containingGnc, is extendible to the whole d&.

We note that this result is in perfect analogy to Goodearl (1986, chap. 4)
about abeliarpo-groups fulfilling (RDP) and, furthermore, in accordance with
Dvurecenskij (2002b).

Proposition 3.7. Let (G, u) be a unital po-group such that u is in the center of
G.

(i) Let H be a normal sub-po-group of G containing . Let s be a state
on (H, u). Then s is extendible to a state on (G, u).
(i) (G, u) possesses a state if and only if,{G, u) possesses a state.

Proof: (i) Let S be the set of all extensions of the stateH — [0, 1] to a state

on a larger normal subgroup &, and letS be partially ordered by the extension
relation. Since then every chain & possesses a supremum, there is, by Zorn's
Lemma, a maximal elemesst : H' — [0, 1]. Let us assume that there is some
c e G\ H’. We will show that thers’ is extendible to a statg’ on the normal
subgroupH” generated byH’ andc; this contradicts the maximality af, and it
follows thats' is state on the whole d&.

SinceH’ containgG,, it follows from Remark 3.5 that the subgroup generated by
H’ andc is normal and thus equal td”. Furthermore, we again conclude from
Gne € H' thatH” ={k+ic:k e H andi € Z}.

Let now

p:sup{sr(:) ‘ae H/,meN,agmc},

r:inf{sf]b):be H’,neN,ncgb}.

We claim that then-co < p <r < oo. Indeed, choosk € N such that—ku <
¢ < ku; then —oo < —k = §'(—ku) < p, and similarly, we have <k < oco.
Furthermore, choose b € H andm, n € N such thath < mcandnc < b. Then
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na < mnc< mb, and we conclude
s’(a) S (na) s'(mb) s/(b)
m mn mn n'’

which mean <.
Now choose € [p, r]. We claim that we may define

s H” = R,
k+ic— s'(k)+iqg, wherek € H'andi € Z.

Indeed, assumie, + i1¢c = ko + i>c for someky, ko € H', iy, 15 € Z, i, < iq; this
means—k; + k, = (i — iz)c. In the casd; = i, we haves'(k;) = s'(kz), hence
S(ki) +i1q = S'(k2) +i,q. Otherwise we have M <p<qg<r<

S(ilkjitkﬂ, thatis,s'(—ky + ko) = (i1 —i2)g ors'(ky) + i1 = s /(k2) +i2Q.

Moreover,s” is positiv{e. Indeed, assunket ic > 0 for somek € H” andi € Z.
If theni < 0, we haves_(# >r > (q,thatiss’(k+ic)=s(k)+iq > 0.Ifi =0,
we havek > 0, whences’(k) = s'(k) > 0.1fi > 0,wehave™¥ < p < g, thatis,
s’(k+ic) = s'(k) +iqg > 0. This concludes the proof thsitis a state onl”, u).
(ii) This follows easily from part (i). O

Given a groupG, let G% = G and, forn > 1, G" = G;1. Recall tha(G is called
solvable if for somen, G" = {0}. An easy consequence of Proposition 3.7 is the
following.

Proposition 3.8. Let (G, u) be a unital po-group such that u is in the center, and
let G be solvable. Then G possesses a state.

Proof: We haveG., = GncU {ku: k € Z} by Remark 3.5. Now, by repeated
application of Proposition 3.7 (ii), we conclude th& (u) possesses a state iff this
is the case for the supe-group{ku : k € Z}, which evidently is true. O

We shall finally apply our results to PE algebras.

Theorem 3.9. Let (E;+, 0, 1) be a symmetrically complemented interval PE
algebra, and letl/(E), 1) be the extension of E to its universal ambient group.
Then E the following statements are equivalent:

(i) E possesses a state.

(i) (U(E), 1) possesses a state.
(i) Thereisnoa> 1in U(E)nc.
(iv) (U(E)nc,1, 1) possesses a state.
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Proof: (i) < (ii). By Proposition 3.3E has a state ifft¢(E), 1) has a state.

(i) < (iii) This is the content of Proposition 3.6.

(i) < (iv) This holds by Proposition 3.7 (ii), because, by Lemma 2.11, 1 is
in the center ot{(E). O

4. LEXICOGRAPHICAL PRODUCT OF AN EFFECT ALGEBRA
AND A po-GROUP

We now turn our attention to a kind of PE algebras for which it is natural to
study homomorphisms to effect algebras and thus to study states. Independently
from that, these special PE algebras are quite interesting in their own right. What
we will consider are PE algebras which are built up from a commutative part,
namely an effect algebra, and a noncommutative part changing elements, so to
say, only in the small. The construction resembles the lexicographical product of
a pair ofpo-groups.

In the subsequent chapter, we will discuss certain algebraic conditions on PE
algebras, for which the PE algebras introduced here provide the typical examples.

Definition 4.1. Let (E; +, 0, 1) be a PE algebra antl (+, <) apo-group. Let
E xiex H d=ef{(e, h)e Ex H:e=0andh >00r0< e < lore= landh >},

and define a partial addition &h xex H componentwise whenever this is possible
and leads to a result iR xex H. Then E xex H; +, (0, 0), (1, 0)) is called the
lexicographical producof the PE algebr& and thepo-groupH.

This definition is motivated by the following facts.

Lemma4.2. Let(E;+, 0, 1)be a PE algebra an@H; +, <) be a po-group.

(i) The lexicographical produdE xex H; +, (0, 0), (1, 0))of Eand His a
PE algebra.

(i) Let E be an interval PE-algebra. Then so is xgx H. Indeed,
let (4(E), 1) be the extension of E to its universal ambient group, and
leti/(E) xex H be the usual lexicographical product of po-groups; then
E Xjex H is isomorphic ta" (U(E) xex H, (1, 0)).
Moreover, let H be directed. Théf(E) xex H is the extension of B e
H to its universal ambient group.

Proof: (i) Itis not difficult to verify the axioms (PE1) to (PE4).
(ii) The first half of what is claimed is obvious.
Assume now thaH is directed. We show first th&t(E xex H) and/(E) x H
are isomorphic groups. From Proposition 2.8 we know that the first group of the
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two is generated by alle( h) € E xx H and subject to the defining relations
(e1, hy) + (&2, hy) = (&3, h3) whenever this equation holds B xex H. Now, by
the directedness dfft we haveH = H* — H™; and inl{(E xex H) we have that
any (0,h), h e H* commutes with anyg, 0),e € E. This means that the group
is actually generated by alg(0) for e € E and all (0,h) for h € H* under the
conditions €, 0) + (e, 0) = (e3, 0) forey, &, €3 € E such thag; + e, = e3, and
(0, hy) + (0, hy) = (0, hg) for hy, hy, hg € H* such thah; + h, = hs. Buttheniit
is clear that/(E xex H) may be identified with the product of(E) andH, that
is, with the grougd{(E) x H.

Now, under this identificatiorl{/(E xex H)* is by Proposition 2.8 the subsemi-
group generated by the elemengsh), wheree € E, h € H and eithere > 0 or
elseh ¢ H™. It follows thatl/(E xex H)™" is identified with {{(E) xjex H)". O

We note that for lexicographical products of PE algebras @mdroups, sym-
metric complementation is not unnatural. Besides, we see that a symmetrically
complemented PE algebra is not necessarilly commutative.

Proposition4.3. The lexicographical product of an effect algebra and a po-group
is symmetrically complemented.

Proof: This is easily checked. O

We shall now establish the exact conditions under which the lexicographical prod-
uct of a PE algebra andmo-group is of the kind we are primarily interested in by
fulfilling the Riesz condition (RDP). Note that we will not be concerned with the
condition (RDR) here. Indeed, (RDf would have rather strong consequences; it
would typically imply the abelianess of tip®-group involved. Anyhow, the more
general discussion of the subsequent Section 5 is about interval PE algebras ful-
filling (RDP); so it is the latter property which is of primary interest in the present
context.

We note that we generalize Corollary 2.12 of Goodearl (1986) to the non-
commutative case.

Theorem 4.4. Let(E xx H; +, (0, 0), (1, 0))be the lexicographical product of
an at least three-element PE algebra E and a po-group H. Then.gH fulfils
(RDP) if and only if E as well as H fulfiiRDP) and one of the following conditions
holds.

(¢) E is atomless, and for any pair of noncomparable elements @,Bb
whose sum & b exists, there is a nonzero x < a, b such that

a/X+b=b/x+a.
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(B) Forany g, h, ke Hthereis an f> g, h commuting with k.
(y) E has asmallest nonzero element. Furthermore, for aaythere is a
positive f> g commuting with g.

Proof: Assume first thaE x H fulfils (RDP). It is clear that thefe as well
asH fulfil (RDP).

Assume now thata) does not hold for the reason that there is an atom
Then either there is b € E such thata A b = 0, ora is the only atom and lies
below all nonzero elements.

In the first case,f); follows. Indeed, we hava + b = b + a (Dvurecenskij and
Vetterlein (2001a, Lemma 3.2 (ii)). Foy, h, k € H, we may apply (RDP) to the
equation
(@, —9g) + (b, k—h) = (b, —g + k) + (a, —h),
togetfl, ..., f4 € H such that
(O! fl) (a"l f2) g (av _g)
(bl f3) (Ol f4) - (bl k - h)
\ \
(b, —g+k) (a, —h).
Because ther?, f4 > 0, we havef2 < —g, —handsof & — 2 > g, h;andf?2
commutes withf 3, so f commutes withf3 — 2 = (f3 4 f4) — (f2 4+ f4) =k.
In the second casey] follows. Indeed, leg € H. The suna + a exists, because
otherwiseE would contain only the two elements 0 ané=1a. So we may apply
(RDP) to the equation
(@, 0)+ (@, 0)=(a, g) + (a, —g),
to getf!, f2 € H such that either the scheme
(0! fl) (av f2) g (a! _g)
(av - fl) (Ol - f2) g (ay g)
" \
(& 0) @ 0)

holds, in which case we have®— f2>0,gandf +g= —f2— fl— f2 =

g+ f;or
@fhH (0 f) - (@&-9
O -fY @-f) - (a9
\ \
(a, 0) @ 0)
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holds, in which case we havie def g1 >0,gandf +g=9+ f.

Assume now that) does not hold for the reason that there is are noncomparable,
summablea, b € E such that for no nonzero < a, b, we havea/x + b = b/x +

a. Choose thea’ € E such thae +b = b + &, and lete!, € € E such that

et a\el - a
b\e! &€ — b
\: \

b a

holds. Thismeana + b\ e! + € =b+a\ e + € thatis,a/e! + b= b/e' +

a; so we have by assumpti@t = 0 and thuse? = 0 anda’ = a. We may now
proceed as above to prove)(

This finishes the proof of one direction of the claimed equivalence.

Assume now thaE andH fulfil (RDP), and let &) or (8) or (y) hold. We are going

to prove that (RDP) holds ilE xex H; so let the equationag, ay) + (by, by) =

(c1, ¢2) + (dy, dy) hold in E xex H. Since (RDP) holds irE, we may easily de-
termine the first components of the four elements we are looking for; choose
e, ..., & € E such that

el € - g

63 64 — b1 (2)
o
c, dj.

To determine the appropriate second components frbmwe will distinguish
several cases, dependent on at which places in (2) zeros appear. The case that all
entries in (2) are 0 is easily handled by the fact that (RDP) holdi.in

Assume now that one whole row or column in (2) is 0; a typical example would
bee! = € = 0. If then, furthermoreg® = ¢! > 0 the scheme

(0,ap) 0,00 — (0,&)
(C1, —ax+Cp) (di,dp) — (by, by)
\: \:

(c1, ) (1, do)

fulfils the requirements. If, on the other hamed = ¢; = 0 ande* = b; = d; > 0,
we haveay, ¢; > 0. We may then apply (RDP) to the equatian+ c, = ¢, +
(—Co+ay+cy)togetfl, ..., f*c Hsuchthatf! + f2=ay, f3+ f4= f1+
f8=cy andf?+ f4*=—c+a+c. Setf*=—f3+by=—12+dy, and
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consider the scheme
(0,fYH (0,f) — (0,a)
0,13 (b, f4) — (b1, bp)
\ \
(0,¢2)  (by, db).
Assume next thatin (2), there is a zero in éhe- e* diagonal, for instance' = 0,
and that? = a; > 0 ande® =¢; > 0.

If («) holds anday, c; are either noncomparable or equal, there is samaeE
such that < x < ay, ¢; anday /X + ¢; = ¢1/X + a;. Then the scheme

(%, a) (@ \x,0) — (a, &)
(cl\X,—a+¢c) (€% d) — (b, by)
3
{ {
(c1, C2) (dy, d2)

fulfils, for some nonzere” e E, the requirements.

If (o) holds anda; < c;, setx = a; ande’* = dy in (3). Similarly, we proceed in
the case; < aj.

If (8) holds, then there is ah! < ay, dy such thatf * commutes withf2 27 £1 +
b, — dp. We get

Oa—-f) (@ f) - (a,a)
(c, ) (Y, —fl+d) — (b1, by)
) !
(c1, C2) (dy, dy).

If (¥) holds, leta be the atom. Thea commutes with alb < 1; indeed, choose
a,a"suchthan+b=b+a andb+a=a"+b;thena+b=b+a+ @\
a)=(a"/a)+a+b+ (& \a),whencea=4a =a". Soifc; > a, setx =aand
€4 = x + €*in (3). Similarly, we proceed in the case= a, buta; > a. If a; =
c1 = a, choose arf € H* such thatf > —c, + a, and f commutes with-c, +
ay, and consider the scheme

(@, ax—f) O, f) - (& &)
0, f —ag, 4+C) (b1, —f+d2) — (b, bo)
4)
1 b
(a, c) (b1, do).

Assume next that in (2), there is a zero in €8e- €° diagonal, for instance? = 0,
and thate! = a; > O ande* =d; > 0.
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If, moreover,e® > 0, we have
(a1, @) 0,0) — (a1,a)
(e3, —ay + Cz) (dl, dz) — (bl, bz)
\2 2
(€1, ¢2) (dy, do).

So lete® = 0.
If (@) holds, we choose somee E such that (< x < ag, di, and we have

(au, /%, &) (x,0) - (a1, &)
X, —az+ ) (b, \X,dp) — (by, by)
A )
(a1, €2) (by, dy).

If (8) holds, choosg, s € H suchthat > —a,, —c, ands > —b,, —d,, and apply
(RDP) to the equationr (+ ay) + (o +8) = (r +¢2) + (d2 + ) to get 2, .. .,
f4e Ht such thatfl+ f2=r +ay, f3+ f*=by+s, fl+f3=r+cy,
f2 + f4 = d, + s. Then we have the scheme
(ag, —r + Y (0, f?) —  (ay, @)
o, £3) (by, f4—s) — (b1, by)
! !

(a1, ©) (by, d2)

If () holds, choose arf € H* such thatf > —c, +a, and f and —c, + a,

commute, to get a scheme similar to (4).
If in (2) there appears no zero, we have

(e', a) (2,00 — (a,a)
(e3, —ap + C) (e4, d) — (bg,b)

\ \
(1, C2) (d1, d2).
This finishes the proof of the second half of the theorem. O

We have in particular the following.

Theorem 4.5. Let(E xex H; +, (0, 0), (1, 0)) be the lexicographical product of
a PE algebra E and a po-group H. Then alsoxtgy H fulfils (RDP)if E as well
as H fulfils(RDP)and one of the following conditions holds.
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(a) For any nonzero a, k& E such that a+ b exists, there is an & E such
thatO < x < a, b and g/x commutes with Ax.
(B) Any pair of elements from H has an upper bound in the center of H.

Now, although the lexicographical products discussed so far involve possibly non-
commutative PE algebras, the example we have in mind is the lexicographical
product of an effect algebra and a, possibly non-abefiagroup.

It is clear that considering states on such algebras means considering states
on the underlying effect algebra. Compare Theorem 3.2.

Proposition 4.6. Let(E xex H; +, (0, 0), (1, 0))be the lexicographical product

of an effect algebra E and a directed po-group H. LetE xex H — E, (a, 0)

— a. Then any state s on Eje, H is of the form s= sF o for some state%son

E; so the mapping s> sF establishes a one-to-one correspondence between the
states of Exex H and the state of E.

Proof: Foranystats: E xgx H — [0, 1], we haves((0, h)) = Oforallh € H,
becausea 5((0, h)) = s((0, nh)) < s((1, 0))= 1foralln € N. SinceH is directed,
it follows thats((a, h)), h € H, does not depend dn O

5. ORDER REGULAR AND NEARLY COMMUTATIVE PE ALGEBRAS

The lexicographical product of an effect algebra and a possibly non-
commutativepo-group, as studied in the previous section, is just the simplest
example of a PE algebra about which we may say that it is noncommutative only
in the small. In the present section, we shall make precise this idea, by introducing
the appropriate algebraic conditions.

Namely, we shallintroduce order regular and nearly commutative PE algebras.
These two properties imply, under certain further natural assumptions, that a PE
algebra possesses a nontrivial effect algebra as a homomaorphic image. In view of
Theorem 3.2, this is equivalent to the existence of states on the algebra.

Moreover, we will slightly strengthen the property of being order regu-
lar. We will see that this has an amazingly far-reaching consequence; the com-
mutator subgroup of thpo-group representing the PE algebra is then purely
infinitesimal.

Definition 5.1. Let (E; +, 0, 1) be a PE algebra. We shall cale E infinitesimal
if n ais defined for alh € N. We denote the set of all infinitesimal elementd&of
by Einﬁs-

Furthermore, let@, u) be a unitapo-group. We shall calh € G infinitesimalif
na < uforalln € Z. We denote the set of all infinitesimal element&dby Gings.
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Now, if the commutator subgroup of th®-group representing a PE algebra
is purely infinitesimal, the question if the algebra has a state is easily answered
affirmatively.

Proposition 5.2. Let (E; +, 0, 1) be an interval PE algebra, and 1é{(E) the
extension of E to its universal ambient group. If then the commutator sub-po-group
of U(E) contains only infinitesimal elements, that is, if

M(E)nc - U(E)inf‘t51
then E possesses a state.

Proof: Under the given assumption it is clear that there imne u in U(E)nc;
so the claim follows from Propositions 3.6 and 3.3. O

For what follows, we need the following preparatory definitions.

Definition 5.3. Let (E; +, 0, 1) be a PE algebra.

() Let a,b e E. We say that is essentially smallethanb if a < b and
neither the left nor the right difference bfanda is infinitesimal. In this
case, we writ@<b.

(i) Two elements, b € E are callectloseif for any ¢ € E we havec<a if
and only ifc<b, and if for anyd € E we havea<d if and only if b<d.
In this case, we writa ~ b.

Remark 5.4. Itis easily verified that, for elemengs b of a symmetrically com-
plemented interval PE algebra E such that b, we havea<b iff a\ b is not
infinitesimal iff a/b is not infinitesimal.

On the basis of the notion of closeness, we newly introduce two properties of PE
algebras. The algebras of the special type discussed in Section 4 provide typical
examples.

Definition 5.5. Let (E; +, 0, 1) be a PE algebra.

(i) E is calledorder regularif any two comparable elements whose left or
right difference is infinitesimal, are close.

(i) E is callednearly commutativé, for any a, b € E, a + b exists if and
only if b + a exists, in which case we haeet+ b ~ b + a.

Proposition 5.6. The lexicographical product of an archimedean effect algebra
and a po-group is order regular and nearly commutative.

Let us first state the crucial property of an order regular PE algebra. Recall
(Dvurecenskij and Vetterlein, 2001c, Definition 3.4 (i)) that mleal of a PE
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algebraE is a setl € E such that (i) for anyb € | anda € E, a < b implies
a € | and (ii) for anya, b € | such thata + b exists, alsa + b € |. An ideal is
callednormalif for a,r, s € E suchthat + a =a+ s, we have < | ifand only
ifsel.

Proposition 5.7. Let (E;+, 0, 1) be an interval PE algebra fulfillingRDP)
which is symmetrically complemented and order regular. Thgig 5 a normal
ideal of E. Moreover, any infinitesimal element of E lies below any non-infinitesimal
one.

Proof: Clearly, Ejs is closed under smaller elements. To see Hyat, is closed
under sums, led, b € Ejsrs Such that + b exists. We then have® a, becausé&

is order regular, and<¥a + b; so it follows 0¢ a + b, which means tha + b ¢
Einfts- SO Eintts is an ideal. BecausE is symmetrically complemented, it easily
follows thatEjnss is normal.

Let nowa € Ejuis andb non-infinitesimal. Then, in view of Remark 5.4, we have
a<a +b. On the other hand, we have by the order-reguldsity a + b, so it
follows a<'b and in particulaa < b. O

Note that, given a PE algebia as specified in Proposition 5.7, we may by
Dvurecenskij and Vetterlein (2001c, Proposition 3.6) form the quotient algebra
[E]E, . to get a PE algebra which is archimedean.

Here, we are interested in the closeness relatiormhich, as we will see now,
proves to be a structure preserving congruence relation as well.

We will from now on assume tacitly that the PE algebras we deal with are
nontrivial.

Theorem 5.8. Let(E; +, 0, 1)be an interval PE algebras fulfillinRDP)which
is symmetrically complemented and order regular. Then the relatian E is
a PE algebra congruence; the quotient algelpEs]~. is a nontrivial PE algebra
fulfilling (RDP).

Proof: Letusfirst note the following. Fa, b € E such thak ~ b, we easily see
thata™ ~ b™. Furthermore, foa, b € E suchthat + b exists, we have ~ a™ iff
a+ b~ 1. Indeed, sinck < a™~,we haveb~ a~ iff (a+b)™ =a~ \ b € Ejs

iff (a+b)~~0iffa+ b=~ 1.

We now prove thate is a congruence according to Definition 2.4 (iii). It is, first
of all, clear that~ is an equivalence relation dB. Let nowa, &', b, b’ € E be
given such thae + b anda’ + b’ exist anda ~ a’ andb ~ b’. We claim that
at+b~a +Db.

Incasethab ~ a~, we have, asshowa,+ b ~ 1;andfrom’ ~ b~ a~ ~ a7, it
followsa’ + b’ ~ 1~ a + b. Inthe opposite case, we hdve& a™, which implies
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by @~ ~ a™ thatb<a’™~ holds and thus’ + b exists. Let nowc € E such that
c< a + b; we shall see that< a’ + b. We then have = ¢, + ¢, for somec, <

a, Cp < b. Ifthena \ c; is not infinitesimal, we have, < a, and it followsc, < a’

and soc=c,+cy<a’ + ¢, < a + b. Otherwise, because=c, +c,<a +
b=cy+a\cs+b/cy,+cpandsa\ c; + b/cy ¢ Einiis and becausEinqgs is by
Proposition 5.7 an ideah/c, is not infinitesimal. Then frona’ <a’ + b/c, and

a’ ~ a~ c;weconclude;<a’ + b/c,andsac = ¢y + ¢, < a’ + b. Inasimilar
manner, we proceed to show tltat @’ + b'. Finally, we may prove by analogous
reasoning that<a + b iff c<a’+b’, and, for anyd € E, thata+b<d iff

a +b<d.

We now prove thate is actually a PE algebra congruence, using Proposition
2.5. So leta, &, b € E such thata + b exists anda’ ~ a; we will show that
there is ab/ ~ b such thata’ + b’ exists. We have a< b™. If even a<b™,

it follows a’<b~ and thusa’ + b exists. Otherwisd~ \ a is infinitesimal; so

a ~a~ b~ and, settindy = a~, we have) = a™~ ~ b anda’ + b’ = 1 exists.
Analogously, we see that for ary ~ b, there is amrg” ~ a such thata” + b”
exists.

So we have proved thaE]~ is a PE algebra. Now, since the constants 0 and 1 are
not close, [0 and [1]. are different elements, that i€ [~ is nontrivial.

It remains to show thatf]~. fulfils (RDP); so leta, b, ¢, d € E be given such that
[a]~ + [b]~ = [c]~ + [d]~. By what was just proved, there drex~ bandd’ ~ d
such that + b’ andc + d’ are defined, and we hawet b’ ~ ¢ + d’. Now the case
thatb' is infinitesimal is easy, because the = [c]~ + [d]~. Otherwise, we
haveb’'> 0, soa<a + b’ and consequentlg<c + d’, thatis,a+ b’ =c+d’

for someb” ~ b’. Thus (RDP), holding irE, enables us to choose the appropriate
four elements fromE]~, as required by Definition 2.9. O

We are finally ready to formulate our first state existing theorem.

Theorem 5.9. Let(E;+, 0, 1)be an interval PE algebra fulfilling (RDP) which

is symmetrically complemented, order regular, and nearly commutative. Then the
quotient algebrd E]~ is a nontrivial interval effect algebra. In particular, E pos-
sesses a state.

Proof: From Theorem 5.8, we know th&E]~ is a nontrivial PE algebra fulfill-
ing (RDP).

Now, by Remark 2.3, for ang, b € E, a + bis defined iffb + a is defined, and it
follows that [a] ~ + [b]~ is defined iff b]~ + [a]~ is defined. BecausE is nearly
commutative, we hava + b ~ b + a if these sums exist. It easily follows that
[E]~ is commutative.
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So we have proved thaE] ~. is an effect algebra fulfilling (RDP). Since for effect
algebras, (RDP) and (RR)Pare equivalent, k]~ is by Theorem 2.10 an interval
of an abeliarpo-group. Namely, E]~ is the unit interval of /([ E]~), [1]~).

(U([El~), [1]~) possesses by Goodearl (1986, Corollary 4.4) a state, which reduces
to a state onf]~. So alsoE possesses a state. O

Now, on our way to show the existence of states, we did not make use of the strong
criterion used in Proposition 5.2, where it was assumed that the commutator sub-
po-groupU(E)nc is purely infinitesimal. But interestingly, we may force such a
situation, by slightly strengthening one of our conditions.

Definition 5.10. Let (E; +, 0, 1) be a PE algebr& is calledstrongly order reg-
ular if E is order regular and if for any non-infinitesimal close elements< E,
there is a non-infinitesimal element a, b.

The typical example for strong order-regularity is given by those lexicographical
products of PE algebras apd-groups which fulfil the Riesz decomposition prop-
erty, that is, by those PE algebras which have been characterized in Theorem 4.4,

Proposition 5.11. The lexicographical product of an archimedean at least five-
element PE algebra and a po-group such that this product f@Ril3P)is strongly
order regular.

We need two preparatory lemmas.

Lemma5.12. Let(E;+, 0, 1)be an interval PE algebra fulfillingRDP)which

is symmetrically complemented, order regular and nearly commutativé/(Egt

be the extension of E to its universal ambient group. Then there is a po-group
congruencer onl{/(E) whose restriction to E is the equally denoted relation on E.

Proof: Letk : E — [E]~, a — [a@]~ the natural homomorphism fror& to
[E]~. By Theorem 5.9,[]~ is an interval effect algebra, represented4gjE]~.).
We see from Definition 2.7 and Proposition 2.8 thagxtends to @o-group ho-
momorphism fronl/(E) to U([E]~). Now, k induces gpo-group congruence:
onY{/(E) which identifies two elements b € E if and only if k (a) = «(b) if and
onlyifa~binE. O

In what follows, we will use the essential order relatorior Z/(E), the universal
ambient group of some PE algeliajust in the same way as f@: Let, for a pair
a,beU(E),a<bholdifa < bandb/a, b\ a ¢ U(E)ins. If thena, b € E, this
relation has obviously the same meaning as with respect to the PE akjebra
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Lemma5.13. Let (E;+, 0, 1) be an interval PE algebra fulfilling (RDP) which

is symmetrically complemented, strongly order regular, and nearly commutative.
Letl/(E) be its extension to its universal ambient group, angdék the extension

of the closeness relation from EM(E). Then, for a, b, & 4(E), a< b and b~
cimply a<c.

Proof: We shall first prove the following preliminary statement with respect to
U(E): Forb,c € E andd € U(E)",b~ candd> 0implyb<d +c.

By replacingd by a smaller, but still non-infinitesimal element if necessary, we may
assume thadl € E. Letd = d; + d._ such thatd, < candd._ <c™. If d.- > 0,
then fromc<d; — +c we haveb<d._ + ¢ < d + c. In the other case, we have
de ~ d. If then, in additiond, < c, it follows d. < b, and we may conclude from
c-<c +d.thatc-<b~+d. <b™ +d,whencédb-+b=c +c<b-+d+
candb<d + c. If, otherwised. ~ ¢ ~ d and, in additioc < ¢c~, we havel. < c~

and sob =~ c< d; + candb<d + c. It remains the casg. ~ ¢ ~ ¢~ = d; then,

by strong order-regularity, there is @&» 0 such thate < d;, c~, and we have
b~ c<e+c and sob<d + c. This completes the proof of the preliminary
statement.

Assume nova< b andb ~ c, wherea, b, c € U(E); we shall provea< c. Since
U(E) is directed and the involved relations are translation-invariant, we may as-
sume thata, b, ¢ > 0. Furthermoreb ~ c then holds exactly iffJ~ = [c]~ In
U(E]~)T; andU([E]~)T is the semigroup freely generated by the elements of
with the defining relationg + y = zfor X, y, z € E such that this equation holds

in E, andx = yforx, y € E suchthak ~ yin E. So we may further assume that

b =b; + by + bs, c = by + ¢, + bs for by, ¢; € E such thab, ~ c;; the general
claim follows from this special case by induction.

Leta = a; + a» + ag such thab; < by, a, < by, andaz < bas. If thena, < b,, we
havea, < ¢, and thusa < ¢. Otherwise we hava, ~ by, and it followsa; < b; or

az < bg, becauseEyys is by Proposition 5.7 a normal ideal; suppose e.g. that the
firstinequality holds. So we hawg ~ ¢, andb; \ a; > 0, and by what was proved
above, we knova, < (by \ a1) + Cp, ora; +ax < by + c,. It follows a<'c. O

In view of Proposition 5.2, the subsequent Theorem 5.14 may be considered the
strengthened version of a state existence theorem.

Theorem5.14. Let (E;+, O, 1) be aninterval PE algebra fulfilling (RDP) which

is symmetrically complemented, strongly order regular, and nearly commutative.
LetZ/(E) be the extension of E to its universal ambient group. Then the commu-
tator sub-po-group of/(E) contains only infinitesimal elements, that is, we have
U(E)nc - M(E)inﬁs-
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Proof: Let =, as before, be the extension of the closeness relation Eam
U(E), according to Lemma 5.12. Sinc&]x is, by Theorem 5.9, an interval
effect algebral/([E]~) is abelian, so we have for @l b € /(E) that[a + b]~ =
[b+ a]~, ora+ b~ b+ a. This means for aly € U/(E)n. thatg ~ 0. By 0< 1
and Lemma 5.13, it followg < 1, so in particularg < 1. We concludé/(E),. €
U(E)infts- m
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