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Pseudoeffect (PE) algebras have been introduced as a noncommutative generalization
of effect algebras. We study in this paper PE algebras with the special property of
having a nonempty state space. To this end, we consider PE algebras which arepo-
group intervals and which are, in a certain sense, noncommutative only in the small.
Such a PE algebra is shown to possess a nontrivial commutative homomorphic image
from which then follows that there exist states. A typical example is given by an interval
of the lexicographical product of twopo-groups the first of which is abelian.

KEY WORDS: pseudoeffect algebras;po-groups; PE algebras with Riesz properties;
states on PE algebras.

1. INTRODUCTION

MV algebras, introduced by Chang in the 1950s, provide an algebraic seman-
tics for the LÃ ukasiewicz multivalued logics (Cignoliet al., 2000). Not long ago,
Georgulescu and Iorgulescu (2001) introduced a noncommutative counterpart of
MV algebras, the pseudo-MV algebras, heading towards the conception of a logic
which in general does not allow to interchange the two arguments of a conjunction.
MV- as well as pseudo-MV algebras are intervals of`-groups, in the first case of
the abelian ones (Dvureˇcenskij, 2002a; Mundici, 1986).

Effect algebras, introduced in 1993 (Foulis and Bennett, 1994), generalize
MV algebras. They are partial additive algebras modeled upon the Hilbert space
quantum effects, which in turn represent the positive outcomes of the yes–no
tests performable at some physical system (Buschet al., 1995). Any interval of
an abelianpo-group, not necessarily a lattice-ordered one, gives rise to an effect
algebra.

Now, pseudoeffect algebras—or PE algebras for short—have been recently
introduced in Dvureˇcenskij and Vetterlein (2001a). They generalize effect algebras
in that they are no longer necessarily commutative; and the same time, they contain
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pseudo-MV algebras as a subclass. PE algebras arise from intervals ofpo-groups
of any kind; if this is the case, we talk about interval PE algebras. In this paper,
we are focussed exclusively on this kind of PE algebra.

The dependences among the mentioned structures is illustrated by the follow-
ing scheme. Note that there is a corresponding scheme forpo-groups: containing
po-groups, abelianpo-groups,̀ -groups, and abeliaǹ-groups.

interval pseudoeffect⇐ interval effect
(interval PE-) algebras

algebras (E; +, 0, 1)
(E; +, 0, 1) (commutative)
⇑ ⇑

pseudo-MV algebras⇐ MV algebras
(E; ⊕, −, ∼, 0, 1) (E; ⊕, ∗, 0, 1)
(lattice ordered, (lattice ordered,
fulfilling (RDP)) commutative,

fulfilling (RDP))

The interval PE algebras are probably not characterizable in a purely algebraic
manner. But by Dvureˇcenskij and Vetterlein (2001b), there is certain kind of Riesz
decomposition property, called (RDP1), which implies for a PE algebra to be an
interval PE algebra.

We are working towards a structure theory for interval PE algebras. In
Dvurečenskij and Vetterlein (2001c), congruences have been considered and in
particular, states have been examined to a certain extent. This paper may be un-
derstood as a continuation of this discussion.

Given an interval PE algebra, the first question to be asked might be, if there
is a state at all. This question has already been considered for the subclasses
of PE algebras shown in our scheme. States on MV algebras were studied in
Chovanec (1993) and Mundici (1995); in particular, MV algebras always possess
states. The same is true for interval effect algebras (Goodearl, 1996), although it
is not true in general for effect algebras (Greechie, 1971; Rieˇcanová, 2001). In the
noncommutative case, the situation is more difficult. States reflect the commutative
part of an algebra only; so it is not amazing, although far from easy to see, that
even a pseudo-MV algebra need not have any state (Dvureˇcenskij, 2001). An
algebraic criterion which exactly would tell that at least one state exists, is not
known.

This paper is organized as follows. After providing in Section 2 a con-
densed version of all the background material needed, we discuss in Section 3
in a first step the exact condition for a PE algebra to possess a state. Here, we
in particular generalize the result of Goodearl (1986) about abelian interpolation
groups.
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In what follows, we are guided by the following idea. Rather than further con-
sidering the general case, we ask which classes of PE algebras seem interesting and
reasonable to be studied at all in the present context. In a first step, in Section 4, we
will actually study a class of concrete examples—intervals in the lexicographical
product of abelianpo-groups and possibly non-abelian ones. For them, we give
the exact conditions to fulfil the Riesz decomposition property.

These lexicographical products may be considered the typical examples of
PE algebras being noncommutative only in the small. In Section 5, this idea is
developed on general algebraic grounds. We will define order-regular and nearly
commutative PE algebras. We will prove that algebras of this kind always pos-
sess a nontrivial interval effect algebra as a homomorphic image. As a particular
consequence, the state space is then nonempty.

Furthermore, we introduce a slightly strengthened version of order regularity,
and on the basis of it, we give an improved version of the state existence theorem.
Namely, by assuming this property, we may show that a PE algebra is represented
by apo-group whose commutator subgroup is purely infinitesimal.

2. INTERVAL PE ALGEBRAS

PE algebras have been introduced in Dvureˇcenskij and Vetterlein (2001a) as
a generalization of effect algebras. The axiom of commutativity, holding for the
latter structures, is replaced by what is called here pseudocommutativity. Con-
sequently, also the uniqueness of a complement is no longer assumed and re-
placed by the uniqueness of a left and of a right complement. We recall the basic
definitions.

Definition 2.1. A structure (E;+, 0, 1), where+ is a partial binary operation and
0 and 1 are constants, is called apseudoeffect algebra, or PE algebrafor short, if,
for all a, b, c ∈ E, the following holds.

(PE1)a+ b and (a+ b)+ c exist if and only ifb+ c anda+ (b+ c) exist, and
in this case (a+ b)+ c = a+ (b+ c) (strong law of associativity).

(PE2) Ifa+ bexists, there are elementsd, e∈ E such thata+ b = d + a = b+ e
(pseudocommutativity).

(PE3) There is exactly oned ∈ E and exactly onee∈ E such thata+ d = e+ a =
1 (unique left and right complementation).

(PE4) If 1+ a or a+ 1 exists, thena = 0 (zero-one law).

Furthermore, for anya, b, ∈ E, we definea ≤ b to hold if a+ c = b for some
c ∈ E.

Finally, a PE algebraE is called aneffect algebraif, for all a, b ∈ E, a+ b is
defined if and only ifb+ a is defined, in which casea+ b = b+ a.
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By ≤, a PE algebra is partially ordered, and this order is, by the pseudocom-
mutativity, two-sided.

In view of (PE3), we may introduce unary operations for the two comple-
ments. Furthermore, since a PE algebra has the cancellation property
(Dvurečenskij and Vetterlein, 2001a, Lemma 1.4(v)), we may introduce a left
and a right difference.

Definition 2.2. Let (E;+, 0,1) be a PE algebra. Let∼,− be those unary operations
on E such that, for anya ∈ E,

a+ a∼ = a− + a = 1.

We call a PE algebrasymmetrically complementedif ∼ = −.

Furthermore, let/, \ be the partial binary operations onE such that, for
a, b ∈ E, b/a is defined iffb \ a is defined iffa ≤ b, in which case we have

(b/a)+ a = a+ (b\a) = b.

We then callb \ a the left andb/a theright differenceof b anda.

Remark 2.3. We note that for elementsa, b of a symmetrically complemented
PE algebra, the existence ofa+ b and ofb+ a is equivalent.

We next clarify the notions of homomorphisms and congruences of PE algebras
(for further details, see Dvureˇcenskij and Vetterlein, 2001c).

Definition 2.4. Let (E; +, 0, 1) and (F ; +, 0, 1) be PE algebras.

(i) A mappingϕ : E→ F is called ahomomorphismif the constants are
preserved and, whenevera+ b is defined fora, b ∈ E, alsoϕ(a)+ ϕ(b)
is defined and equalsϕ(a+ b).

(ii) A homomorphismϕ : E→ F is called anepimorphismif its image
ϕ(E) generates the whole algebraF .

(iii) An equivalence relation∼ on E is called acongruenceif the following
holds: For anya, a′, b, b′ ∈ E such thata ∼ a′, b ∼ b′ and a+ b,
a′ + b′ are both defined, we havea+ b ∼ a′ + b′.

A congruence∼ on E is called aPE algebra congruenceif the quotient algebra
[E]∼ = {[a]∼ : a ∈ E} is again a PE algebra. Here, the addition on [E]∼ is defined
according to rule [a]∼ + [b]∼ is defined iff for somea′ ∼ a andb′ ∼ b, and equals
[c]∼ iff a′ + b′ is defined anda′ + b′ ∼ c for somea, b, c ∈ E, and the constants
are [0]∼ and [1]∼.
A congruence does in general not lead again to a PE algebra; but we have the
following (Dvurečenskij and Vetterlein, 2001c, Proposition 3.3 (ii)).
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Proposition 2.5. Let (E; +, 0, 1)be a PE algebra, and let∼ be a congruence
on E such that, for any pair a, b ∈ E the sum of which is defined, the following
condition holds: For any a′ ∼ a, there is a b′ ∼ b, such that a′ + b′ is defined; and
for any b′′ ∼ b there is an a′′ ∼ a, such that a′′ + b′′ is defined. Then∼ is a PE
algebra congruence.

Note that a congruence on a PE algebra may identify any pair of elements; this
results in an algebra with only one element. We shall call a PE algebra (E; +, 0,
1) nontrivial if this is not the case, that is, if 06= 1.

Now, as explained in the Introduction, we are interested in those PE algebras which
arise from intervals ofpo-groups.

Definition 2.6. A structure (G; +,≤, u), where (G; +,≤) is apo-group andu is
strong unit ofG, is calleda unital po-group. We will usually refer to it simply by
(G, u).

For a unitalpo-group (G, u), let 0(G, u)
def= {g ∈ G : 0≤ g ≤ u}, and define+

to be the partial binary operation on0(G, u) that is the restriction of the group
addition to those pairs of elements whose sum lies in0(G, u). Then the structure
(0(G, u);+, 0,u) is called aninterval PE algebra.

It is easily checked that an interval PE algebra is actually a PE algebra.
Among the unitalpo-groups representing a given interval PE algebra, there is

a canonical one, defined and constructed as follows (Dvureˇcenskij and Vetterlein,
2001c, Definition 5.2, Proposition 5.3).

Definition 2.7. Let (E;+, 0, 1) be a PE algebra and let (G, u) be a unitalpo-group.
Let ι : E→ 0(G, u) be an injective epimorphism such that, for every mappingψ

from E into a groupH preserving existing sums, there is a group homomorphism
hψ : G→ H such thatψ = hψ ◦ ι. Then (G, u) together withι is called auniver-
sal ambient group for E.

Certainly, if a PE algebra has a universal ambient group, then it is the only one up
to isomorphism.

Proposition 2.8. Let (E; +, 0, 1) be an interval PE algebra. LetU(E) be the
group given by the generators E and the defining relations a+ b = c for a, b, c ∈
E whenever this equation holds in E; letι be the natural embedding of E in
U(E); and let u= ι(1). We may then partially orderU(E) by lettingU(E)+ the
subsemigroup generated byι(E). Moreover,((U(E), u), ι) is a universal ambient
group for E.
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For an interval PE algebraE, we will in the sequel identifyE and0(U(E), u),
which in particular meansu = 1, and we will refer to (U(E), 1), orU(E), simply
as the extension ofE to its universal ambient group.
Now, under the following condition a PE algebra is always apo-group interval
(Dvurečenskij and Vetterlein, 2001b, Theorem 5.7).

Definition 2.9. We say that a PE algebra (E; +, 0, 1) fulfils (RDP) if for any
a, b, c, d ∈ E such thata+ b = c+ d, there aree1, e2, e3, e4 ∈ E such that the
following scheme holds:

e1 e2 → a

e3 e4 → b

↓ ↓
c d

(1)

Moreover, we say thatE fulfils (RDP1) if for any a, b, c, d ∈ E such thata+ b =
c+ d, there aree1, e2, e3, e4 ∈ E such that (i) the scheme (1) holds and (ii) for
everye′2 ≤ e2 ande′3 ≤ e3, we havee′2+ e′3 = e′3+ e′2.

Herein, by the scheme (1) to hold, we mean that every row and every column sums
up to what the points to; see Dvureˇcenskij and Vetterlein (2001a).

Theorem 2.10. Any PE algebra(E;+, 0, 1) fulfilling (RDP1) is an interval PE
algebra.

It is clear how the representingpo-groups of symmetrically complemented PE
algebras are to be characterized.

Recall that thecenterof a group is the subset of those group elements which
commute with all other elements.

Lemma 2.11. Let(E;+, 0, 1)be an interval PE algebra and(U(E), 1) the exten-
sion of E to its universal ambient group. Then E is symmetrically complemented
if and only if1 as an element ofU(E) is in the center ofU(E).

3. STATES ON INTERVAL PE ALGEBRAS

To analyze the structure of some algebra, we may consider the set of all
homomorphisms to a certain simple kind of the same type of algebra. The probably
simplest nontrivial kind of a PE algebra is given by the real unit interval, that is,
by 0(R, 1), whereR is the additive group of real numbers. The homomorphisms
to it are called states (Dvureˇcenskij and Vetterlein, 2001c).
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Definition 3.1. Let (E; +, 0, 1) be a PE algebra. Let ([0, 1];+, 0, 1) be the
PE algebra whose ground set is the real unit interval and whose addition is the
usual sum of real numbers whenever defined within [0, 1]. Then astateon E is a
homomorphisms : E→ [0, 1] of PE algebras.

Moreover, let (G, u) be a unitalpo-groups. Then astateonG is a homomorphism
s : G→ R of the unitalpo-groups (G, u) and (R, 1).

In other words, a state on a PE algebraE is a function fromE to the real unit
interval preserving any existing sum and mapping the constant 1 to 1. Similarly,
a state on apo-group (G, u) is a function fromG to the real numbers preserving
addition and positivity and mappingu to 1.

So states on a PE algebraE, which is possibly noncommutative, are homomor-
phisms to the commutative algebra [0, 1]. Possible different elementsa+ b and
b+ a for somea, b ∈ E, are mapped to the same value. So one may wonder if
there is an effect algebra underlying a PE algebra having the same state space.
This is, under certain assumptions, indeed the case (Dvuseˇcenskij and Vetterlein,
2001c).

Theorem 3.2. Let (E;+, 0, 1) be an interval PE algebra possessing a state.
Then there is an interval effect algebra(F; +, 0, 1) and an epimorphismε :
(E;+, 0, 1)→ (F ;+, 0, 1) such that the following holds. Any state s on E
is of the form s= sF◦ ε for some state sF on F; so the mapping s7→ sF es-
tablishes a one-to-one correspondence between the states of E and the states
of F.

Now note that Theorem 3.2 makes one crucial assumption: At least one state on
the PE algebra under consideration must exist. Only if this is case, we may reduce
a noncommutative PE algebra to a commutative one in a way which preserves the
states and, by the way, also the other homomorphisms to commutative PE alge-
bras. Now, to find sufficient conditions under which this situation is given is the
motivation underlying this paper.

In this section, we formulate exact conditions for a state on a PE algebra to exist.
Let us see first how the states on a PE algebra are related to those on a representing
group.

Proposition 3.3. Let (E;+, 0, 1) be an interval PE algebra, and let(U(E), 1)
be the extension of E to its universal ambient group. Then any state on E may
be extended uniquely to a state on(U(E), 1); and the reduction of any state on
(U(E), 1) to E is a state on E.
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In particular, E possesses a state if and only if(U(E), 1) possesses a state.

Proof: Let s : E→ [0, 1] be a state. Thens, viewed as a mapping fromE toR,
preserves existing sums, whence by Definition 2.7,s may be extended to a group
homomorphismS : U(E)→ R.
ThenS is a state. Indeed,S is, as stated, a group homomorphism; furthermore, it
mapsU(E)+ toR+, becauseS(E) = s(E) ⊆ [0, 1] andU(E)+ is generated byE;
and, certainly, we haveS(1)= s(1)= 1. ¤

For a unitalpo-group, we have in turn the following exact criterion for a state to
exist.

Definition 3.4. Let (G;+,≤) be apo-group. LetGnc be the subgroup ofG gen-
erated by the elements of the form (a+ b)− (b+ a), a, b ∈ G, endowed with the
order inherited fromG. We callGnc thecommutator sub-po-group of G.
Moreover, let (G, u) be a unitalpo-group. LetGnc,u be the subgroup ofG generated
by u andGnc, endowed with the order inherited fromG, We call (Gnc,u, u) the
unital commutator sub-po-group of(G, u).

Remark 3.5. Given apo-groupG, note how we may describe the elements of
Gnc. Namely,Gnc contains exactly all sums of elements or negated elements ofG
such that every element occurs the same number of times negated and nonnegated.
In particular,Gnc is a normal subgroup and thus, endowed with the order ofG, a
po-group.

More general, letH be a subgroup ofG containingGnc. If then any sum of
elements ofG is contained inH , also any permutation of this sum is inH . So
again,H is automatically normal and, endowed with the order fromG, apo-group.
Finally, given a unitalpo-group (G, u) such thatu is in the center ofG, note how we
may describe Gnc,u. Namely, we simply have Gnc,u = Gnc∪ {ku :
k ∈ Z}.

Proposition 3.6. Let (G, u) be a unital po-group. Then(G, u) possesses a state
if and only if there is no a≥ u in Gnc.

Proof: Let s be a state on (G, u). Thena ≥ u for somea ∈ Gnc would mean
s(a) ≥ 1; buts is constantly 0 on the whole ofGnc. This proves one direction of
the statement.

Let now conv(Gnc) be the convex hull ofGnc in the partially ordered setG; then
conv(Gnc) is closed under the group operations and under conjugation, so it is a
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convex normal subgroup ofG. So we may form the quotient group [G]conv(Gnc) of
G by conv(Gnc), which has [u]conv(Gnc) as a strong unit.

If for noa ∈ Gncwe haveu ≤ a, thenu /∈conv(Gnc), and so ([G]conv(Gnc), [u]conv(Gnc))
is a nontrivial abelian unitalpo-group. Every such group possesses a state by
Goodearl (1986, Corollary 4.4). It follows that also (G, u) possesses a state.¤

We will now relate the states on a unitalpo-group (G, u) to its unital commutator
sub-po-group (Gnc,u, u). For, we will see that, if there is a state on one of these
groups, then there is one on the other one. What we prove is even more: any state
on a subgroup ofG containingGnc,u is extendible to the whole ofG.

We note that this result is in perfect analogy to Goodearl (1986, chap. 4)
about abelianpo-groups fulfilling (RDP) and, furthermore, in accordance with
Dvurečenskij (2002b).

Proposition 3.7. Let (G, u) be a unital po-group such that u is in the center of
G.

(i) Let H be a normal sub-po-group of G containing Gnc,u. Let s be a state
on (H, u). Then s is extendible to a state on (G, u).

(ii) (G, u) possesses a state if and only if (Gnc,u, u) possesses a state.

Proof: (i) Let S be the set of all extensions of the states : H → [0, 1] to a state
on a larger normal subgroup ofG, and letS be partially ordered by the extension
relation. Since then every chain inS possesses a supremum, there is, by Zorn’s
Lemma, a maximal elements′ : H ′ → [0, 1]. Let us assume that there is some
c ∈ G \ H ′. We will show that thens′ is extendible to a states′′ on the normal
subgroupH ′′ generated byH ′ andc; this contradicts the maximality ofs′, and it
follows thats′ is state on the whole ofG.

SinceH ′ containsGnc, it follows from Remark 3.5 that the subgroup generated by
H ′ andc is normal and thus equal toH ′′. Furthermore, we again conclude from
Gnc ⊆ H ′ that H ′′ = {k+ ic : k ∈ H ′ andi ∈ Z}.
Let now

p = sup

{
s′(a)

m
: a ∈ H ′, m ∈ N, a ≤ mc

}
,

r = inf

{
s′(b)

n
: b ∈ H ′, n ∈ N, nc≤ b

}
.

We claim that then−∞ < p ≤ r < ∞. Indeed, choosek ∈ N such that−ku≤
c ≤ ku; then −∞ < −k = s′(−ku) ≤ p, and similarly, we haver ≤ k < ∞.
Furthermore, choosea, b ∈ H ′ andm, n ∈ N such thata ≤ mcandnc≤ b. Then
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na≤ mnc≤ mb, and we conclude

s′(a)

m
= s′(na)

mn
≤ s′(mb)

mn
= s′(b)

n
,

which meansp ≤ r .
Now chooseq ∈ [ p, r ]. We claim that we may define

s′′ : H ′′ → R,

k+ ic 7→ s′(k)+ iq, wherek ∈ H ′andi ∈ Z.
Indeed, assumek1+ i1c = k2+ i2c for somek1, k2 ∈ H ′, i1, i2 ∈ Z, i2 ≤ i1; this
means−k1+ k2 = (i1− i2)c. In the casei1 = i2 we haves′(k1) = s′(k2), hence
s′(k1)+ i1q = s′(k2)+ i2q. Otherwise we have s′(−k1+k2)

i1−i2
≤ p ≤ q ≤ r ≤

s′(−k1+k2)
i1−i2

, that is,s′(−k1+ k2) = (i1− i2)q or s′(k1)+ i1q = s′(k2)+ i2q.

Moreover,s′′ is positive. Indeed, assumek+ ic ≥ 0 for somek ∈ H ′ andi ∈ Z.
If then i < 0, we haves′(k)

−i ≥ r ≥ q, that is,s′′(k+ ic) = s′(k)+ iq ≥ 0. If i = 0,

we havek ≥ 0, whences′′(k) = s′(k) ≥ 0. If i > 0, we haves′(−k)
i ≤ p ≤ q, that is,

s′′(k+ ic) = s′(k)+ iq ≥ 0. This concludes the proof thats′′ is a state on (H ′′, u).
(ii) This follows easily from part (i). ¤

Given a groupG, let G0 = G and, forn ≥ 1, Gn = Gn−1
nc . Recall thatG is called

solvable, if for somen, Gn = {0}. An easy consequence of Proposition 3.7 is the
following.

Proposition 3.8. Let (G, u) be a unital po-group such that u is in the center, and
let G be solvable. Then G possesses a state.

Proof: We haveGnc,u = Gnc∪ {ku : k ∈ Z} by Remark 3.5. Now, by repeated
application of Proposition 3.7 (ii), we conclude that (G, u) possesses a state iff this
is the case for the sub-po-group{ku : k ∈ Z}, which evidently is true. ¤

We shall finally apply our results to PE algebras.

Theorem 3.9. Let (E;+, 0, 1) be a symmetrically complemented interval PE
algebra, and let(U(E), 1) be the extension of E to its universal ambient group.
Then E the following statements are equivalent:

(i) E possesses a state.
(ii) (U(E), 1) possesses a state.

(iii) There is no a≥ 1 in U(E)nc.
(iv) (U(E)nc,1, 1) possesses a state.
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Proof: (i)⇔ (ii). By Proposition 3.3,E has a state iff (U(E), 1) has a state.
(ii) ⇔ (iii) This is the content of Proposition 3.6.
(ii) ⇔ (iv) This holds by Proposition 3.7 (ii), because, by Lemma 2.11, 1 is

in the center ofU(E). ¤

4. LEXICOGRAPHICAL PRODUCT OF AN EFFECT ALGEBRA
AND A po-GROUP

We now turn our attention to a kind of PE algebras for which it is natural to
study homomorphisms to effect algebras and thus to study states. Independently
from that, these special PE algebras are quite interesting in their own right. What
we will consider are PE algebras which are built up from a commutative part,
namely an effect algebra, and a noncommutative part changing elements, so to
say, only in the small. The construction resembles the lexicographical product of
a pair ofpo-groups.
In the subsequent chapter, we will discuss certain algebraic conditions on PE
algebras, for which the PE algebras introduced here provide the typical examples.

Definition 4.1. Let (E;+, 0, 1) be a PE algebra and (H ;+,≤) apo-group. Let

E ×lex H
def= {(e, h) ∈ E × H : e= 0 andh ≥ 0 or 0< e < 1ore= 1andh ≥};

and define a partial addition onE ×lex H componentwise whenever this is possible
and leads to a result inE ×lex H . Then (E ×lex H ;+, (0, 0), (1, 0)) is called the
lexicographical productof the PE algebraE and thepo-groupH .

This definition is motivated by the following facts.

Lemma 4.2. Let (E;+, 0, 1)be a PE algebra and(H ;+,≤) be a po-group.

(i) The lexicographical product(E ×lex H ;+, (0, 0), (1, 0))of E and H is a
PE algebra.

(ii) Let E be an interval PE-algebra. Then so is E×lex H. Indeed,
let (U(E), 1) be the extension of E to its universal ambient group, and
letU(E)×lex H be the usual lexicographical product of po-groups; then
E ×lex H is isomorphic to0(U(E)×lex H, (1, 0)).
Moreover, let H be directed. ThenU(E)×lex H is the extension of E×lex

H to its universal ambient group.

Proof: (i) It is not difficult to verify the axioms (PE1) to (PE4).
(ii) The first half of what is claimed is obvious.

Assume now thatH is directed. We show first thatU(E ×lex H ) andU(E)× H
are isomorphic groups. From Proposition 2.8 we know that the first group of the
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two is generated by all (e, h) ∈ E ×lex H and subject to the defining relations
(e1, h1)+ (e2, h2) = (e3, h3) whenever this equation holds inE ×lex H . Now, by
the directedness ofH we haveH = H+ − H+; and inU(E ×lex H ) we have that
any (0,h), h ∈ H+ commutes with any (e, 0),e∈ E. This means that the group
is actually generated by all (e, 0) for e∈ E and all (0,h) for h ∈ H+ under the
conditions (e1, 0)+ (e2, 0)= (e3, 0) fore1, e2, e3 ∈ E such thate1+ e2 = e3, and
(0, h1)+ (0, h2)= (0, h3) for h1, h2, h3 ∈ H+ such thath1+ h2 = h3. But then it
is clear thatU(E ×lex H ) may be identified with the product ofU(E) andH , that
is, with the groupU(E)× H .
Now, under this identification,U(E ×lex H )+ is by Proposition 2.8 the subsemi-
group generated by the elements (e, h), wheree∈ E, h ∈ H and eithere > 0 or
elseh ∈ H+. It follows thatU(E ×lex H )+ is identified with (U(E)×lex H )+. ¤

We note that for lexicographical products of PE algebras andpo-groups, sym-
metric complementation is not unnatural. Besides, we see that a symmetrically
complemented PE algebra is not necessarilly commutative.

Proposition 4.3. The lexicographical product of an effect algebra and a po-group
is symmetrically complemented.

Proof: This is easily checked. ¤

We shall now establish the exact conditions under which the lexicographical prod-
uct of a PE algebra and apo-group is of the kind we are primarily interested in by
fulfilling the Riesz condition (RDP). Note that we will not be concerned with the
condition (RDP1) here. Indeed, (RDP1) would have rather strong consequences; it
would typically imply the abelianess of thepo-group involved. Anyhow, the more
general discussion of the subsequent Section 5 is about interval PE algebras ful-
filling (RDP); so it is the latter property which is of primary interest in the present
context.

We note that we generalize Corollary 2.12 of Goodearl (1986) to the non-
commutative case.

Theorem 4.4. Let (E ×lex H ;+, (0, 0), (1, 0))be the lexicographical product of
an at least three-element PE algebra E and a po-group H. Then E×lex H fulfils
(RDP) if and only if E as well as H fulfil(RDP) and one of the following conditions
holds.

(α) E is atomless, and for any pair of noncomparable elements a, b∈ E
whose sum a+ b exists, there is a nonzero x < a, b such that

a/x + b = b/x + a.
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(β) For any g, h, k∈ H there is an f≥ g, h commuting with k.
(γ ) E has a smallest nonzero element. Furthermore, for any g∈ H there is a

positive f≥ g commuting with g.

Proof: Assume first thatE ×lex H fulfils (RDP). It is clear that thenE as well
asH fulfil (RDP).

Assume now that (α) does not hold for the reason that there is an atoma.
Then either there is ab ∈ E such thata ∧ b = 0, or a is the only atom and lies
below all nonzero elements.
In the first case, (β)1 follows. Indeed, we havea+ b = b+ a (Dvurečenskij and
Vetterlein (2001a, Lemma 3.2 (ii)). Forg, h, k ∈ H , we may apply (RDP) to the
equation

(a,−g)+ (b, k− h) = (b,−g+ k)+ (a,−h),

to get f 1, . . . , f 4 ∈ H such that

(0, f 1) (a, f 2) → (a,−g)

(b, f 3) (0, f 4) → (b, k− h)

↓ ↓
(b,−g+ k) (a,−h).

Because thenf 1, f 4 ≥ 0, we havef 2 ≤ −g,−h and sof
def= − f 2 ≥ g, h; and f 2

commutes withf 3, so f commutes withf 3− f 2 = ( f 3+ f 4)− ( f 2+ f 4) = k.
In the second case, (γ ) follows. Indeed, letg ∈ H . The suma+ a exists, because
otherwiseE would contain only the two elements 0 and 1= a. So we may apply
(RDP) to the equation

(a, 0)+ (a, 0)= (a, g)+ (a,−g),

to get f 1, f 2 ∈ H such that either the scheme

(0, f 1) (a, f 2) → (a,−g)

(a,− f 1) (0,− f 2) → (a, g)

↓ ↓
(a, 0) (a, 0)

holds, in which case we havef
def=− f 2 ≥ 0, g and f + g = − f 2− f 1− f 2 =

g+ f ; or

(a, f 1) (0, f 2) → (a,−g)

(0,− f 1) (a,− f 2) → (a, g)

↓ ↓
(a, 0) (a, 0)
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holds, in which case we havef
def= − f 1 ≥ 0, g and f + g = g+ f .

Assume now that (α) does not hold for the reason that there is are noncomparable,
summablea, b ∈ E such that for no nonzerox ≤ a, b, we havea/x + b = b/x +
a. Choose thena′ ∈ E such thata+ b = b+ a′, and lete1, e2 ∈ E such that

e1 a \ e1 → a

b \ e1 e2 → b

↓ ↓
b a′

holds. This meansa+ b \ e1+ e2 = b+ a \ e1+ e2, that is,a/e1+ b = b/e1+
a; so we have by assumptione1 = 0 and thuse2 = 0 anda′ = a. We may now
proceed as above to prove (β).
This finishes the proof of one direction of the claimed equivalence.
Assume now thatE andH fulfil (RDP), and let (α) or (β) or (γ ) hold. We are going
to prove that (RDP) holds inE ×lex H ; so let the equation (a1, a2)+ (b1, b2) =
(c1, c2)+ (d1, d2) hold in E ×lex H . Since (RDP) holds inE, we may easily de-
termine the first components of the four elements we are looking for; choose
e1, . . . , e4 ∈ E such that

e1 e2 → a1

e3 e4 → b1

↓ ↓
c1 d1.

(2)

To determine the appropriate second components fromH , we will distinguish
several cases, dependent on at which places in (2) zeros appear. The case that all
entries in (2) are 0 is easily handled by the fact that (RDP) holds inH .
Assume now that one whole row or column in (2) is 0; a typical example would
bee1 = e2 = 0. If then, furthermore,e3 = c1 > 0 the scheme

(0, a2) (0, 0) → (0, a2)

(c1,−a2+ c2) (d1, d2) → (b1, b2)

↓ ↓
(c1, c2) (d1, d2)

fulfils the requirements. If, on the other hand,e3 = c1 = 0 ande4 = b1 = d1 > 0,
we havea2, c2 ≥ 0. We may then apply (RDP) to the equationa2+ c2 = c2+
(−c2+ a2+ c2) to get f 1, . . . , f 4 ∈ H such thatf 1+ f 2 = a2, f 3+ f 4 = f 1+
f 3 = c2, and f 2+ f 4 = −c2+ a2+ c2. Set f ′4 = − f 3+ b2 = − f 2+ d2, and
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consider the scheme

(0, f 1) (0, f 2) → (0, a2)

(0, f 3) (b1, f ′4) → (b1, b2)

↓ ↓
(0, c2) (b1, d2).

Assume next that in (2), there is a zero in thee1− e4 diagonal, for instancee1 = 0,
and thate2 = a1 > 0 ande3 = c1 > 0.
If (α) holds anda1, c1 are either noncomparable or equal, there is somex ∈ E
such that 0< x < a1, c1 anda1/x + c1 = c1/x + a1. Then the scheme

(x, a2) (a1 \ x, 0) → (a1, a2)

(c1 \ x,−a2+ c2) (e′4, d2) → (b1, b2)

↓ ↓
(c1, c2) (d1, d2)

(3)

fulfils, for some nonzeroe′4 ∈ E, the requirements.
If (α) holds anda1 < c1, setx = a1 ande′4 = d1 in (3). Similarly, we proceed in
the casec1 < a1.

If (β) holds, then there is anf 1 ≤ a2, d2 such thatf 1 commutes withf 2 def= f 1 +
b2− d2. We get

(0, a2− f 1) (a1, f 1) → (a1, a2)

(c1, f 2) (e4,− f 1+ d2) → (b1, b2)

↓ ↓
(c1, c2) (d1, d2).

If (γ ) holds, leta be the atom. Thena commutes with allb < 1; indeed, choose
a′, a′′ such thata+ b = b+ a′ andb+ a = a′′ + b; thena+ b = b+ a+ (a′ \
a) = (a′′/a)+ a+ b+ (a′ \ a), whencea = a′ = a′′. So ifc1 > a, setx = a and
e′4 = x + e4 in (3). Similarly, we proceed in the casec1 = a, buta1 > a. If a1 =
c1 = a, choose anf ∈ H+ such thatf ≥ −c2+ a2 and f commutes with−c2+
a2, and consider the scheme

(a, a2− f ) (0, f ) → (a, a2)

(0, f − a2,+c2) (b1,− f + d2) → (b1, b2)

↓ ↓
(a, c2) (b1, d2).

(4)

Assume next that in (2), there is a zero in thee2− e3 diagonal, for instancee2 = 0,
and thate1 = a1 > 0 ande4 = d1 > 0.
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If, moreover,e3 > 0, we have

(a1, a2) (0, 0) → (a1, a2)

(e3,−a2+ c2) (d1, d2) → (b1, b2)

↓ ↓
(c1, c2) (d1, d2).

So lete3 = 0.
If (α) holds, we choose somex ∈ E such that 0< x < a1, d1, and we have

(a1, /x, a2) (x, 0) → (a1, a2)

(x,−a2+ c2) (b1, \x, d2) → (b1, b2)

↓ ↓
(a1, c2) (b1, d2).

If (β) holds, chooser, s ∈ H such thatr ≥ −a2,−c2 ands ≥ −b2,−d2, and apply
(RDP) to the equation (r + a2)+ (b2+ s) = (r + c2)+ (d2+ s) to get f 1, . . . ,
f 4 ∈ H+ such that f 1+ f 2 = r + a2, f 3+ f 4 = b2+ s, f 1+ f 3 = r + c2,
f 2 + f 4 = d2+ s. Then we have the scheme

(a1,−r + f 1) (0, f 2) → (a1, a2)

(0, f 3) (b1, f 4− s) → (b1, b2)

↓ ↓
(a1, c2) (b1, d2)

If (γ ) holds, choose anf ∈ H+ such that f ≥ −c2+ a2 and f and−c2+ a2

commute, to get a scheme similar to (4).
If in (2) there appears no zero, we have

(e1, a2) (e2, 0) → (a1, a2)

(e3,−a2+ c2) (e4, d2) → (b1, b2)

↓ ↓
(c1, c2) (d1, d2).

This finishes the proof of the second half of the theorem. ¤

We have in particular the following.

Theorem 4.5. Let (E ×lex H ;+, (0, 0), (1, 0))be the lexicographical product of
a PE algebra E and a po-group H. Then also E×lex H fulfils (RDP) if E as well
as H fulfils(RDP)and one of the following conditions holds.
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(α) For any nonzero a, b∈ E such that a+ b exists, there is an x∈ E such
that0 < x < a , b and a/x commutes with b/x.

(β) Any pair of elements from H has an upper bound in the center of H.

Now, although the lexicographical products discussed so far involve possibly non-
commutative PE algebras, the example we have in mind is the lexicographical
product of an effect algebra and a, possibly non-abelian,po-group.

It is clear that considering states on such algebras means considering states
on the underlying effect algebra. Compare Theorem 3.2.

Proposition 4.6. Let(E ×lex H ;+, (0, 0), (1, 0))be the lexicographical product
of an effect algebra E and a directed po-group H. Letι : E ×lex H → E, (a, 0)
7→ a. Then any state s on E×lex H is of the form s= sE ◦ ι for some state sE on
E; so the mapping s7→ sE establishes a one-to-one correspondence between the
states of E×lex H and the state of E.

Proof: For any states : E ×lex H → [0, 1], we haves((0, h)) = 0 for allh ∈ H ,
becausen s((0, h)) = s((0, nh)) ≤ s((1, 0))= 1 for alln ∈ N. SinceH is directed,
it follows thats((a, h)), h ∈ H , does not depend onh. ¤

5. ORDER REGULAR AND NEARLY COMMUTATIVE PE ALGEBRAS

The lexicographical product of an effect algebra and a possibly non-
commutativepo-group, as studied in the previous section, is just the simplest
example of a PE algebra about which we may say that it is noncommutative only
in the small. In the present section, we shall make precise this idea, by introducing
the appropriate algebraic conditions.

Namely, we shall introduce order regular and nearly commutative PE algebras.
These two properties imply, under certain further natural assumptions, that a PE
algebra possesses a nontrivial effect algebra as a homomorphic image. In view of
Theorem 3.2, this is equivalent to the existence of states on the algebra.

Moreover, we will slightly strengthen the property of being order regu-
lar. We will see that this has an amazingly far-reaching consequence; the com-
mutator subgroup of thepo-group representing the PE algebra is then purely
infinitesimal.

Definition 5.1. Let (E;+, 0, 1) be a PE algebra. We shall calla ∈ E infinitesimal
if n a is defined for alln ∈ N. We denote the set of all infinitesimal elements ofE
by Einfts.
Furthermore, let (G, u) be a unitalpo-group. We shall calla ∈ G infinitesimalif
n a≤ u for all n ∈ Z. We denote the set of all infinitesimal elements ofG by Ginfts.
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Now, if the commutator subgroup of thepo-group representing a PE algebra
is purely infinitesimal, the question if the algebra has a state is easily answered
affirmatively.

Proposition 5.2. Let (E;+, 0, 1) be an interval PE algebra, and letU(E) the
extension of E to its universal ambient group. If then the commutator sub-po-group
of U(E) contains only infinitesimal elements, that is, if

U(E)nc ⊆ U(E)infts,
then E possesses a state.

Proof: Under the given assumption it is clear that there is noa ≥ u in U(E)nc;
so the claim follows from Propositions 3.6 and 3.3. ¤

For what follows, we need the following preparatory definitions.

Definition 5.3. Let (E;+, 0, 1) be a PE algebra.

(i) Let a, b ∈ E. We say thata is essentially smallerthanb if a < b and
neither the left nor the right difference ofb anda is infinitesimal. In this
case, we writea<̄b.

(ii) Two elementsa, b ∈ E are calledcloseif for any c ∈ E we havec<̄a if
and only ifc<̄b, and if for anyd ∈ E we havea<̄d if and only if b<̄d .
In this case, we writea ≈ b.

Remark 5.4. It is easily verified that, for elementsa, b of a symmetrically com-
plemented interval PE algebra E such thata ≤ b, we havea<̄b iff a \ b is not
infinitesimal iff a/b is not infinitesimal.
On the basis of the notion of closeness, we newly introduce two properties of PE
algebras. The algebras of the special type discussed in Section 4 provide typical
examples.

Definition 5.5. Let (E;+, 0, 1) be a PE algebra.

(i) E is calledorder regularif any two comparable elements whose left or
right difference is infinitesimal, are close.

(ii) E is callednearly commutativeif, for any a, b ∈ E, a+ b exists if and
only if b+ a exists, in which case we havea+ b ≈ b+ a.

Proposition 5.6. The lexicographical product of an archimedean effect algebra
and a po-group is order regular and nearly commutative.

Let us first state the crucial property of an order regular PE algebra. Recall
(Dvurečenskij and Vetterlein, 2001c, Definition 3.4 (i)) that anideal of a PE
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algebraE is a setI ⊆ E such that (i) for anyb ∈ I anda ∈ E, a ≤ b implies
a ∈ I and (ii) for anya, b ∈ I such thata+ b exists, alsoa+ b ∈ I . An ideal is
callednormalif for a, r, s ∈ E such thatr + a = a+ s, we haver ∈ I if and only
if s ∈ I .

Proposition 5.7. Let (E;+, 0, 1) be an interval PE algebra fulfilling(RDP)
which is symmetrically complemented and order regular. Then Einfts is a normal
ideal of E. Moreover, any infinitesimal element of E lies below any non-infinitesimal
one.

Proof: Clearly,Einfts is closed under smaller elements. To see thatEinfts is closed
under sums, leta, b ∈ Einfts such thata+ b exists. We then have 0≈ a, becauseE
is order regular, anda ¯6<a + b; so it follows 0 ¯6< a + b, which means thata+ b ∈
Einfts. So Einfts is an ideal. BecauseE is symmetrically complemented, it easily
follows thatEinfts is normal.
Let nowa ∈ Einfts andb non-infinitesimal. Then, in view of Remark 5.4, we have
a <̄ a + b. On the other hand, we have by the order-regularityb ≈ a+ b, so it
follows a <̄ b and in particulara < b. ¤

Note that, given a PE algebraE as specified in Proposition 5.7, we may by
Dvurečenskij and Vetterlein (2001c, Proposition 3.6) form the quotient algebra
[E]Einfts , to get a PE algebra which is archimedean.

Here, we are interested in the closeness relation≈, which, as we will see now,
proves to be a structure preserving congruence relation as well.

We will from now on assume tacitly that the PE algebras we deal with are
nontrivial.

Theorem 5.8. Let(E;+, 0, 1)be an interval PE algebras fulfilling(RDP)which
is symmetrically complemented and order regular. Then the relation≈ on E is
a PE algebra congruence; the quotient algebra[E]≈ is a nontrivial PE algebra
fulfilling (RDP).

Proof: Let us first note the following. Fora, b ∈ E such thata ≈ b, we easily see
thata∼ ≈ b∼. Furthermore, fora, b ∈ E such thata+ bexists, we haveb ≈ a∼ iff
a+ b ≈ 1. Indeed, sinceb ≤ a∼, we haveb ≈ a∼ iff ( a+ b)∼ = a∼ \ b ∈ Einfts

iff ( a+ b)∼ ≈ 0 iff a+ b ≈ 1.
We now prove that≈ is a congruence according to Definition 2.4 (iii). It is, first
of all, clear that≈ is an equivalence relation onE. Let nowa, a′, b, b′ ∈ E be
given such thata+ b and a′ + b′ exist anda ≈ a′ and b ≈ b′. We claim that
a+ b ≈ a′ + b′.
In case thatb ≈ a∼, we have, as shown,a+ b ≈ 1; and fromb′ ≈ b ≈ a∼ ≈ a′∼, it
follows a′ + b′ ≈ 1≈ a+ b. In the opposite case, we haveb <̄ a∼, which implies
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by a′∼ ≈ a∼ that b <̄ a ′∼ holds and thusa′ + b exists. Let nowc ∈ E such that
c <̄ a + b; we shall see thatc <̄ a ′ + b. We then havec = ca + cb for someca ≤
a, cb ≤ b. If thena \ ca is not infinitesimal, we haveca <̄ a, and it followsca <̄ a ′

and soc = ca + cb <̄ a ′ + cb ≤ a′ + b. Otherwise, becausec = ca + cb <̄ a +
b = ca + a \ ca + b/cb + cb and soa \ ca + b/cb /∈ Einfts and becauseEinfts is by
Proposition 5.7 an ideal,b/cb is not infinitesimal. Then froma′ <̄ a ′ + b/cb and
a′ ≈ a ≈ ca we concludeca <̄ a ′ + b/cb and soc = ca + cb <̄ a ′ + b. In a similar
manner, we proceed to show thatc <̄ a ′ + b′. Finally, we may prove by analogous
reasoning thatc <̄ a + b iff c <̄ a ′ + b′, and, for anyd ∈ E, that a+ b <̄ d iff
a′ + b′ <̄ d .
We now prove that≈ is actually a PE algebra congruence, using Proposition
2.5. So leta, a′, b ∈ E such thata+ b exists anda′ ≈ a; we will show that
there is ab′ ≈ b such thata′ + b′ exists. We have a≤ b−. If even a <̄ b−,
it follows a′ <̄ b− and thusa′ + b exists. Otherwiseb− \ a is infinitesimal; so
a′ ≈ a ≈ b− and, settingb′ = a′∼, we haveb′ = a′∼ ≈ b anda′ + b′ = 1 exists.
Analogously, we see that for anyb′′ ≈ b, there is ana′′ ≈ a such thata′′ + b′′

exists.
So we have proved that [E]≈ is a PE algebra. Now, since the constants 0 and 1 are
not close, [0]≈ and [1]≈ are different elements, that is, [E]≈ is nontrivial.
It remains to show that [E]≈ fulfils (RDP); so leta, b, c, d ∈ E be given such that
[a]≈ + [b]≈ = [c]≈ + [d]≈. By what was just proved, there areb′ ≈ b andd′ ≈ d
such thata+ b′ andc+ d′ are defined, and we havea+ b′ ≈ c+ d′. Now the case
that b′ is infinitesimal is easy, because then [a]≈ = [c]≈ + [d]≈. Otherwise, we
haveb′ >̄ 0, soa <̄ a + b′ and consequentlya <̄ c + d′, that is,a+ b′′ = c+ d′

for someb′′ ≈ b′. Thus (RDP), holding inE, enables us to choose the appropriate
four elements from [E]≈, as required by Definition 2.9. ¤

We are finally ready to formulate our first state existing theorem.

Theorem 5.9. Let (E;+, 0, 1)be an interval PE algebra fulfilling (RDP) which
is symmetrically complemented, order regular, and nearly commutative. Then the
quotient algebra[E]≈ is a nontrivial interval effect algebra. In particular, E pos-
sesses a state.

Proof: From Theorem 5.8, we know that [E]≈ is a nontrivial PE algebra fulfill-
ing (RDP).

Now, by Remark 2.3, for anya, b ∈ E, a+ b is defined iffb+ a is defined, and it
follows that [a]≈ + [b]≈ is defined iff [b]≈ + [a]≈ is defined. BecauseE is nearly
commutative, we havea+ b ≈ b+ a if these sums exist. It easily follows that
[E]≈ is commutative.
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So we have proved that [E]≈ is an effect algebra fulfilling (RDP). Since for effect
algebras, (RDP) and (RDP1) are equivalent, [E]≈ is by Theorem 2.10 an interval
of an abelianpo-group. Namely, [E]≈ is the unit interval of (U([E]≈), [1]≈).

(U([E]≈), [1]≈) possesses by Goodearl (1986, Corollary 4.4) a state, which reduces
to a state on [E]≈. So alsoE possesses a state. ¤

Now, on our way to show the existence of states, we did not make use of the strong
criterion used in Proposition 5.2, where it was assumed that the commutator sub-
po-groupU(E)nc is purely infinitesimal. But interestingly, we may force such a
situation, by slightly strengthening one of our conditions.

Definition 5.10. Let (E;+, 0, 1) be a PE algebra.E is calledstrongly order reg-
ular if E is order regular and if for any non-infinitesimal close elementsa, b ∈ E,
there is a non-infinitesimal elementc ≤ a, b.

The typical example for strong order-regularity is given by those lexicographical
products of PE algebras andpo-groups which fulfil the Riesz decomposition prop-
erty, that is, by those PE algebras which have been characterized in Theorem 4.4.

Proposition 5.11. The lexicographical product of an archimedean at least five-
element PE algebra and a po-group such that this product fulfils(RDP)is strongly
order regular.

We need two preparatory lemmas.

Lemma 5.12. Let (E;+, 0, 1)be an interval PE algebra fulfilling(RDP)which
is symmetrically complemented, order regular and nearly commutative. LetU(E)
be the extension of E to its universal ambient group. Then there is a po-group
congruence≈ onU(E) whose restriction to E is the equally denoted relation on E.

Proof: Let κ : E→ [E]≈, a 7→ [a]≈ the natural homomorphism fromE to
[E]≈. By Theorem 5.9, [E]≈ is an interval effect algebra, represented byU([E]≈).
We see from Definition 2.7 and Proposition 2.8 thatκ extends to apo-group ho-
momorphism fromU(E) to U([E]≈). Now, κ induces apo-group congruence≈
onU(E) which identifies two elementsa, b ∈ E if and only if κ(a) = κ(b) if and
only if a ≈ b in E. ¤

In what follows, we will use the essential order relation<̄ for U(E), the universal
ambient group of some PE algebraE, just in the same way as forE: Let, for a pair
a, b ∈ U(E), a <̄ b hold if a < b andb/a, b \ a /∈ U(E)infts. If thena, b ∈ E, this
relation has obviously the same meaning as with respect to the PE algebraE.
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Lemma 5.13. Let (E;+, 0, 1) be an interval PE algebra fulfilling (RDP) which
is symmetrically complemented, strongly order regular, and nearly commutative.
LetU(E) be its extension to its universal ambient group, and let≈ be the extension
of the closeness relation from E toU(E). Then, for a, b, c∈ U(E), a <̄ b and b≈
c imply a<̄ c.

Proof: We shall first prove the following preliminary statement with respect to
U(E): For b, c ∈ E andd ∈ U(E)+, b ≈ c andd >̄ 0 imply b <̄ d + c.

By replacingd by a smaller, but still non-infinitesimal element if necessary, we may
assume thatd ∈ E. Let d = dc + dc− such thatdc ≤ c anddc− ≤ c−. If dc− >̄ 0,
then fromc <̄ dc −+c we haveb <̄ dc− + c ≤ d + c. In the other case, we have
dc ≈ d. If then, in additiondc <̄ c, it follows dc <̄ b, and we may conclude from
c− <̄ c− + dc thatc− <̄ b− + dc ≤ b− + d, whenceb− + b = c− + c <̄ b− + d +
candb <̄ d + c. If, otherwise,dc ≈ c ≈ d and, in additionc <̄ c−, we havedc <̄ c−

and sob ≈ c <̄ dc + c andb <̄ d + c. It remains the casedc ≈ c ≈ c− ≈ d; then,
by strong order-regularity, there is ane>̄ 0 such thate≤ dc, c−, and we have
b ≈ c <̄ e+ c and sob <̄ d + c. This completes the proof of the preliminary
statement.

Assume nowa <̄ b andb ≈ c, wherea, b, c ∈ U(E); we shall provea <̄ c. Since
U(E) is directed and the involved relations are translation-invariant, we may as-
sume thata, b, c ≥ 0. Furthermore,b ≈ c then holds exactly if [b]≈ = [c]≈ in
U([E]≈)+; andU([E]≈)+ is the semigroup freely generated by the elements ofE
with the defining relationsx + y = z for x, y, z ∈ E such that this equation holds
in E, andx = y for x, y ∈ E such thatx ≈ y in E. So we may further assume that
b = b1+ b2+ b3, c = b1+ c2+ b3 for b2, c2 ∈ E such thatb2 ≈ c2; the general
claim follows from this special case by induction.
Let a = a1+ a2+ a3 such thata1 ≤ b1, a2 ≤ b2, anda3 ≤ b3. If thena2 <̄ b2, we
havea2 <̄ c2 and thusa <̄ c. Otherwise we havea2 ≈ b2, and it followsa1 <̄ b1 or
a3 <̄ b3, becauseEinfts is by Proposition 5.7 a normal ideal; suppose e.g. that the
first inequality holds. So we havea2 ≈ c2 andb1 \ a1 >̄ 0, and by what was proved
above, we knowa2 <̄ (b1 \ a1)+ c2, or a1+ a2 <̄ b1+ c2. It follows a <̄ c. ¤

In view of Proposition 5.2, the subsequent Theorem 5.14 may be considered the
strengthened version of a state existence theorem.

Theorem 5.14. Let (E;+, 0, 1) be an interval PE algebra fulfilling (RDP) which
is symmetrically complemented, strongly order regular, and nearly commutative.
LetU(E) be the extension of E to its universal ambient group. Then the commu-
tator sub-po-group ofU(E) contains only infinitesimal elements, that is, we have
U(E)nc ⊆ U(E)infts.
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Proof: Let ≈, as before, be the extension of the closeness relation fromE to
U(E), according to Lemma 5.12. Since [E]≈ is, by Theorem 5.9, an interval
effect algebra,U([E]≈) is abelian, so we have for alla, b ∈ U(E) that [a+ b]≈ =
[b+ a]≈, or a+ b ≈ b+ a. This means for allg ∈ U(E)nc thatg ≈ 0. By 0<̄ 1
and Lemma 5.13, it followsg <̄ 1, so in particular,g ≤ 1. We concludeU(E)nc ⊆
U(E)infts. ¤
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